Школьный этап Сириус по Математике для 9 класса 2 группа 2025/26 г.

Олимпиада «Сириус» ответы, вопросы по Математике 9 класс, школьный этапа Всероссийской олимпиады 2 группа от 14 октября 2025 года. Официальный вариант с вопросами по химическим элементам, простым и сложным веществам.

Школьный этап Сириус по Математике для 2-ой группы 14 октября 2025 г.

Вопросы и ответы 9 класс

Задание 1. Есть 90 литров смеси, в которой доли красной, зелёной и синей красок равняются 35%, 25% и 40% соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 40% красной, 30% зелёной и 30% синей красок? Синюю краску добавлять нельзя.
Красной:   л
Зелёной:   л
Раскрыть ответ

Задание 1.  Есть 70 литров смеси, в которой доли красной, зелёной и синей красок равняются 20%, 35% и 45 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 25% красной, 40% зелёной и 35% синей красок? Синюю краску добавлять нельзя.
Раскрыть ответ

Задание 1.  Есть 90 литров смеси, в которой доли красной, зелёной и синей красок равняются 25%, 20% и 55 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 30% красной, 25% зелёной и 45% синей красок? Синюю краску добавлять нельзя.
Раскрыть ответ

Задание 1.  Есть 30 литров смеси, в которой доли красной, зелёной и синей красок равняются 35%, 40% и 25% соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 40% красной, 45% зелёной и 15% синей красок? Синюю краску добавлять нельзя.
Раскрыть ответ

Задание 2. В таблице 6×6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли.
Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
Раскрыть ответ

Задание 3. Два равносторонних треугольника с параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3√3. Найдите разность периметров этих треугольников.


Раскрыть ответ

Задание 4. Числа 3, 6, 11, 16, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия:в первой группе оказались только простые числа,во второй группе сумма чисел делится на 3,сумма чисел в третьей группе больше половины от общей суммы.
Какие числа в какой группе?
3
6
11
16
23
31
Первая группа
Вторая группа
Третья группа
Раскрыть ответ

Задание 4. Числа 2, 6, 11, 15, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
Раскрыть ответ

Задание 4. Числа 3, 8, 11, 17, 22 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
Раскрыть ответ

Задание 4. Числа 2, 6, 11, 15, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
Раскрыть ответ

Задание 5. Дан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 15, BE = 30.
Раскрыть ответ

Задание 5. Дан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 12, BE = 54.
Раскрыть ответ

Задание 5. Дан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 16, BE = 50.
Раскрыть ответ

Задание 5. ан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 14, BE = 112.
Раскрыть ответ

Задание 6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 18. Чему может быть равна сумма чисел в отмеченных клетках?

Раскрыть ответ

Задание 6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 17. Чему может быть равна сумма чисел в отмеченных клетках?

Раскрыть ответ

Задание 6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 17. Чему может быть равна сумма чисел в отмеченных клетках?
Раскрыть ответ

Задание 6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 9. Чему может быть равна сумма чисел в отмеченных клетках?
Раскрыть ответ

Задание 6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 9. Чему может быть равна сумма чисел в отмеченных клетках?
Раскрыть ответ

Задание 7. Натуральные числа а, в таковы, что число 9a+10b/a+2b тоже натуральное. Чему может быть a+2b a равно отношение a\b? Укажите все подходящие варианты. Каждый ответ записывайте b в отдельное поле, добавляя их при необходимости.
Раскрыть ответ

Задание 8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 80 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, И когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
Раскрыть ответ

Задание 8.  На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 112 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть И тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
Раскрыть ответ

Задание 8. На квалификационное соревнование, по результатам которого отбираются участники областной чемпионат, подали заявки 96 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. И Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
Раскрыть ответ

Задание 8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 128 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть и тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат?
Раскрыть ответ

PANDAEXAM
2055

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *