Единая городская контрольная работа по Математике 11 класс, профильный уровень. вариант № 956

Единая городская контрольная работа по Математике 11 класс, профильный уровень. вариант № 956 задания, ответы, решения

Официальные материалы задания, ответы по Единой городской контрольной работе “ЕГКР” по Математике 11 класс, профильный уровень, вариант № 956 в формате ЕГЭ проходящая 25 марта 2025 г.

Разбор варианта ЕГКР по Математике 11 класс профильный уровень

→ Скачать полные варианты, задания и решения

Вариант № 956 задания и ответы

Задание 1. Один из углов треугольника равен 40°, а величины двух других относятся как 2:3.
Найдите больший угол этого треугольника. Ответ дайте в градусах.

Один из углов треугольника равен 40°, а величины двух других относятся как 2:3. Найдите больший угол этого треугольника. Ответ дайте в градусах.

→ Узнать ответ

Задание 2. Длина вектора а равна 53 , угол между векторами а и b равен 60°, а скалярное произведение векторов а и b равно 113. Найдите длину вектора b.
→ Узнать ответ

Задание 3. Боковые рёбра треугольной пирамиды взаимно перпендикулярны, длина каждого из них равна 6. Найдите объём пирамиды.

Боковые рёбра треугольной пирамиды взаимно перпендикулярны, длина каждого из них равна 6. Найдите объём пирамиды.

→ Узнать ответ

Задание 4. В пенале у Полины лежали фишки с номерами от 1 до 22. Брат Юра потерял две фишки с чётными номерами. Найдите вероятность того, что случайно взятая Полиной фишка окажется с чётным номером.
→ Узнать ответ

Задание 5. Рекламное агентство использует автоматическую телефонную станцию, которая по введённому списку телефонных номеров дозванивается до абонентов и при ответе передаёт записанное голосовое сообщение. При отсутствии ответа станция набирает номер ещё раз. Если с абонентом не удалось соединиться после пяти попыток, станция набирает номер другого абонента. Установлено, что станция может дозвониться до абонента с первого раза с вероятностью 0,3, а при каждом следующем наборе номера этого абонента вероятность увеличивается на 0,1. Найдите вероятность того, что станция сможет передать абоненту сообщение не позднее третьего набора его номера.
→ Узнать ответ

Задание 6. Найдите корень уравнения 2x+3=√27
→ Узнать ответ

Задание 7. Найдите значение выражения log2 3 * log9 2.
→ Узнать ответ

Задание 8. На рисунке изображён график у=f ‘(x) производной функции f(x) , определённой на интервале (-3 ;9). Найдите количество точек минимума функции f(x) , принадлежащих отрезку [-2;8,5].

На рисунке изображён график у=f '(x) производной функции f(x) , определённой на интервале (-3 ;9). Найдите количество точек минимума функции f(x) , принадлежащих отрезку [-2;8,5].

→ Узнать ответ

Задание 9. После дождя уровень воды в колодце повышается. Мальчик измеряет время падения небольших камешков в колодец и рассчитывает расстояние до воды по формуле h = 5t2 , где h — расстояние (в метрах), t — время падения (в секундах). До дождя время падения камешков составляло 0,6 секунды. На сколько метров должен подняться уровень воды после дождя, чтобы измеряемое время изменилось на 0,2 секунды? Ответ дайте в метрах.
→ Узнать ответ

Задание 10. Имеется два сплава. Первый сплав содержит 10% меди, второй — 40 % меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30 % меди. Найдите массу третьего сплава. Ответ дайте в килограммах.
→ Узнать ответ

Задание 11. На рисунке изображён график функции f(х )=ах+b. Найдите значение х, при котором f(х) = 29.

 На рисунке изображён график функции f(х )=ах+b. Найдите значение х, при котором f(х) = 29.

→ Узнать ответ

Задание 12. Найдите наибольшее значение функции у=х3-147х+11 на отрезке [-8;0].
→ Узнать ответ

PANDAEXAM
2055

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *